techdoc centre
本站搜索 用户名: 密码:
   HOME  TECHDOC  WEB  SDK  NSDT  TOPIC  BIZDOC   LOGIN
  发布地区 Global 发布类别 TECHDOC Programming
字体:
  在用户空间编程使用linux内核链表list,hlist宏定义和操作
于 2017-08-20 编辑: Eric 查看: 1148 次   Article Url Print this page

在用户空间编程使用linux内核链表list,hlist宏定义和操作.

linux内核中的list_head和hlist_head/hlist_node是将数据结构串起来成为链表的两个重要链表构造工具。利用他们和其对应的宏定义,可以非常容易地将数据构成链表,进行链表的各种操作,和数据查询。

在内核中,他们使用的十分广泛。这些链表操作宏定义具有通用性,和具体数据结构无关。

利用他们,编程者就不必要自己具体操作链表的指针,而集中精力关心数据本身。使用这些工具的程序效率是很高的。

因为他们是内核定义的数据结构,在内核编程使用起来十分简单。

struct list_head { struct list_head *prev, *next; } 尺寸为2个指针大小。32位系统上为8个字节。
struct hlist_node 也是包含2个指针占8个字节。
struct hlist_head 占4个字节.

用他们将多个相同的数据结构串起来,必须在数据结构中加上他们的定义。一个数据结构也可以用多个相同链表或不同链表同时串起,串到多个不同的串中。

如果不在内核而在用户空间编程,也可以利用这些链表。(事实上,内核其它的数据结构多数都可以在用户空间使用)。

要“移植到用户空间”, 必须查找定义链表数据和宏的包含文件,将该文件拷贝出来,做适当改动,去掉内核特定的定义开关。如果该文件中引用的其它内核包含文件的关键数据定义,最好去掉引用,而将定义拷贝过来。

下面我给出的例子,就是一个用不同list_head和hash list将用户数据struct ST同时串起来的例子。
i_list是普通list的串。
i_hash是hash list的串(实际是多个串,被HASH分散在数组中,HASH关键字即是数组下标)

你可以想象数据结构是一个个货场的相同型号的分散放置的集装箱,为了将他们串起来,必须在箱子上安装上有孔的铁环,然后用铁丝通过这些安装上铁环就可以将他们串起来。
数据结构中的定义struct list_head就相当于铁环,可以焊接到箱子的任何位置。头部中间尾部都可以。

本例子中,一个箱子上安装了2个环,一个是i_list, 将箱子用一个长铁丝全部穿起来的。

还安了一个环i_hash, 这个环的用途是将箱子分组串到不同的串中(每个串使用一个独立的铁丝,当然每根铁丝长度就短了)。不同串的各个铁丝的头部排列放到一个hlist_head的数组中。


为了查找一个箱子,可以顺着长铁丝找(遍历),一个一个比较,知道找到箱子。但这样慢。
还可以直接顺着某个短铁丝找,如果事先可以确定要找的箱子必定在该端铁丝串中--这是可以做到的,hash的作用。

struct hlist_head仅仅用了一个指针,占4个字节,因为hash数组往往相当大,而每个串长度很短(hash的目的)。这样可以节省4个字节乘以数据大小的空间。

文件list.h是 include/linux/list.h文件的用户空间改编版本。
具体的定义的含义,我这里不再叙述,你可以自己查找。有许多内核数据结构分析的地方有解释。


建议用户用C编程时候,如涉及到链表使用,那么使用list_head! 可以极大节省你的工作量和调式时间。
linux内核中还有许多定义好通用的东西,都是非常精彩和高效的。许多都可移植到用户程序中使用。


#include <stdio.h>
#include <stdlib.h>
#include "list.h"

struct ST {
  unsigned char ch;
  int this_data;
  
  struct list_head i_list;
  
  int more_data;
  
  struct hlist_node i_hash;
  
  char str_data[32];
  //.......
  int end_data;
} *st;

struct list_head list1; 
struct hlist_head hlist[1024];

#define LISTSIZE 1024

unsigned int gethash(int c)
{
  return (c & 0xff);
}

main()
{
int i;
unsigned int hash;
struct list_head *list;
struct list_head *n, *p;
struct ST *pst;
struct hlist_node *hp;

  INIT_LIST_HEAD(&list1);
  for(hash = 0; hash < LISTSIZE; hash++)
    INIT_HLIST_HEAD(&hlist[hash]);

  for(i = 0; i < LISTSIZE; i++) {
struct ST *p = malloc(sizeof(*p));
if(!p) {
  printf("malloc.\n");
  break;
}

p->ch = 'a' + i;

        //串入长串
        list_add(&p->i_list, &list1);


        //串入HASH短串
hash = gethash(p->ch);
printf("ALLOC %x %d %p %u\n", p->ch, i, p, hash);
hlist_add_head(&p->i_hash, &hlist[hash]);

  }
  
      
  //通过长铁丝遍历
  i = 0;
  list_for_each(list, &list1) {
struct ST *p = list_entry(list, struct ST, i_list);
    printf("%p value %d = %c\n", p, i, p->ch);
i++;
  }
  printf("total %d \n", i);

  //----------------------
  //通过hash串查找内容'C'的箱子
  hash = gethash('c');
  hlist_for_each(hp, &hlist[hash]) {
struct ST *p = hlist_entry(hp, struct ST, i_hash);
printf("hlist: %c\n", p->ch);

  }

}


改编后的放在用户空间的头文件list.h



#ifndef _LINUX_LIST_H
#define _LINUX_LIST_H

#define offsetof(TYPE, MEMBER) ((size_t) &((TYPE *)0)->MEMBER)

#define container_of(ptr, type, member) ( { \
const typeof( ((type *)0)->member ) *__mptr = (ptr); \
(type *)( (char *)__mptr - offsetof(type,member) ); } )

static inline void prefetch(const void *x) {;}
static inline void prefetchw(const void *x) {;}

#define LIST_POISON1 ((void *) 0x00100100)
#define LIST_POISON2 ((void *) 0x00200200)

struct list_head {
struct list_head *next, *prev;
};

#define LIST_HEAD_INIT(name) { &(name), &(name) }

#define LIST_HEAD(name) \
struct list_head name = LIST_HEAD_INIT(name)

#define INIT_LIST_HEAD(ptr) do { \
(ptr)->next = (ptr); (ptr)->prev = (ptr); \
} while (0)

/*
* Insert a new entry between two known consecutive entries.
*
* This is only for internal list manipulation where we know
* the prev/next entries already!
*/
static inline void __list_add(struct list_head *new,
   struct list_head *prev,
   struct list_head *next)
{
next->prev = new;
new->next = next;
new->prev = prev;
prev->next = new;
}

/**
* list_add - add a new entry
* @new: new entry to be added
* @head: list head to add it after
*
* Insert a new entry after the specified head.
* This is good for implementing stacks.
*/
static inline void list_add(struct list_head *new, struct list_head *head)
{
__list_add(new, head, head->next);
}

/**
* list_add_tail - add a new entry
* @new: new entry to be added
* @head: list head to add it before
*
* Insert a new entry before the specified head.
* This is useful for implementing queues.
*/
static inline void list_add_tail(struct list_head *new, struct list_head *head)
{
__list_add(new, head->prev, head);
}

static inline void __list_del(struct list_head * prev, struct list_head * next)
{
next->prev = prev;
prev->next = next;
}

static inline void list_del(struct list_head *entry)
{
__list_del(entry->prev, entry->next);
entry->next = LIST_POISON1;
entry->prev = LIST_POISON2;
}

static inline void list_del_init(struct list_head *entry)
{
__list_del(entry->prev, entry->next);
INIT_LIST_HEAD(entry);
}

static inline void list_move(struct list_head *list, struct list_head *head)
{
    __list_del(list->prev, list->next);
    list_add(list, head);
}

static inline void list_move_tail(struct list_head *list,
 struct list_head *head)
{
    __list_del(list->prev, list->next);
    list_add_tail(list, head);
}

static inline int list_empty(const struct list_head *head)
{
return head->next == head;
}

static inline int list_empty_careful(const struct list_head *head)
{
struct list_head *next = head->next;
return (next == head) && (next == head->prev);
}

static inline void __list_splice(struct list_head *list,
struct list_head *head)
{
struct list_head *first = list->next;
struct list_head *last = list->prev;
struct list_head *at = head->next;

first->prev = head;
head->next = first;

last->next = at;
at->prev = last;
}

/**
* list_splice - join two lists
* @list: the new list to add.
* @head: the place to add it in the first list.
*/
static inline void list_splice(struct list_head *list, struct list_head *head)
{
if (!list_empty(list))
__list_splice(list, head);
}

/**
* list_splice_init - join two lists and reinitialise the emptied list.
* @list: the new list to add.
* @head: the place to add it in the first list.
*
* The list at @list is reinitialised
*/
static inline void list_splice_init(struct list_head *list,
  struct list_head *head)
{
if (!list_empty(list)) {
__list_splice(list, head);
INIT_LIST_HEAD(list);
}
}

#define list_entry(ptr, type, member) container_of(ptr, type, member)


#define list_for_each(pos, head) \
for (pos = (head)->next; prefetch(pos->next), pos != (head); \
     pos = pos->next)

#define __list_for_each(pos, head) \
for (pos = (head)->next; pos != (head); pos = pos->next)

#define list_for_each_prev(pos, head) \
for (pos = (head)->prev; prefetch(pos->prev), pos != (head); \
     pos = pos->prev)

#define list_for_each_safe(pos, n, head) \
for (pos = (head)->next, n = pos->next; pos != (head); \
pos = n, n = pos->next)

#define list_for_each_entry(pos, head, member) \
for (pos = list_entry((head)->next, typeof(*pos), member); \
   prefetch(pos->member.next), &pos->member != (head); \
   pos = list_entry(pos->member.next, typeof(*pos), member))

#define list_for_each_entry_reverse(pos, head, member) \
for (pos = list_entry((head)->prev, typeof(*pos), member); \
   prefetch(pos->member.prev), &pos->member != (head); \
   pos = list_entry(pos->member.prev, typeof(*pos), member))

#define list_prepare_entry(pos, head, member) \
((pos) ? : list_entry(head, typeof(*pos), member))

#define list_for_each_entry_continue(pos, head, member) \
for (pos = list_entry(pos->member.next, typeof(*pos), member); \
   prefetch(pos->member.next), &pos->member != (head); \
   pos = list_entry(pos->member.next, typeof(*pos), member))

#define list_for_each_entry_safe(pos, n, head, member) \
for (pos = list_entry((head)->next, typeof(*pos), member), \
n = list_entry(pos->member.next, typeof(*pos), member); \
   &pos->member != (head); \
   pos = n, n = list_entry(n->member.next, typeof(*n), member))

//HASH LIST
struct hlist_head {
struct hlist_node *first;
};

struct hlist_node {
struct hlist_node *next, **pprev;
};

#define HLIST_HEAD_INIT { .first = NULL }
#define HLIST_HEAD(name) struct hlist_head name = { .first = NULL }
#define INIT_HLIST_HEAD(ptr) ((ptr)->first = NULL)
#define INIT_HLIST_NODE(ptr) ((ptr)->next = NULL, (ptr)->pprev = NULL)

static inline int hlist_unhashed(const struct hlist_node *h)
{
return !h->pprev;
}

static inline int hlist_empty(const struct hlist_head *h)
{
return !h->first;
}

static inline void __hlist_del(struct hlist_node *n)
{
struct hlist_node *next = n->next;
struct hlist_node **pprev = n->pprev;
*pprev = next;
if (next)
next->pprev = pprev;
}

static inline void hlist_del(struct hlist_node *n)
{
__hlist_del(n);
n->next = LIST_POISON1;
n->pprev = LIST_POISON2;
}

static inline void hlist_del_init(struct hlist_node *n)
{
if (n->pprev) {
__hlist_del(n);
INIT_HLIST_NODE(n);
}
}

static inline void hlist_add_head(struct hlist_node *n, struct hlist_head *h)
{
struct hlist_node *first = h->first;
n->next = first;
if (first)
first->pprev = &n->next;
h->first = n;
n->pprev = &h->first;
}


/* next must be != NULL */
static inline void hlist_add_before(struct hlist_node *n,
struct hlist_node *next)
{
n->pprev = next->pprev;
n->next = next;
next->pprev = &n->next;
*(n->pprev) = n;
}

static inline void hlist_add_after(struct hlist_node *n,
struct hlist_node *next)
{
next->next = n->next;
n->next = next;
next->pprev = &n->next;

if(next->next)
next->next->pprev = &next->next;
}

#define hlist_entry(ptr, type, member) container_of(ptr,type,member)

#define hlist_for_each(pos, head) \
for (pos = (head)->first; pos && ({ prefetch(pos->next); 1; }); \
   pos = pos->next)

#define hlist_for_each_safe(pos, n, head) \
for (pos = (head)->first; pos && ({ n = pos->next; 1; }); \
   pos = n)

#define hlist_for_each_entry(tpos, pos, head, member) \
for (pos = (head)->first; \
   pos && ({ prefetch(pos->next); 1;}) && \
({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;}); \
   pos = pos->next)

#define hlist_for_each_entry_continue(tpos, pos, member) \
for (pos = (pos)->next; \
   pos && ({ prefetch(pos->next); 1;}) && \
({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;}); \
   pos = pos->next)

#define hlist_for_each_entry_from(tpos, pos, member) \
for (; pos && ({ prefetch(pos->next); 1;}) && \
({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;}); \
   pos = pos->next)

#define hlist_for_each_entry_safe(tpos, pos, n, head, member)  \
for (pos = (head)->first; \
   pos && ({ n = pos->next; 1; }) &&  \
({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;}); \
   pos = n)

#endif



网址: 相关网址

相关文章:

o GDB中的“观察点”/watchpoint使用
o C语言家族扩展
o 嵌入式linux调试:用gdbserver调试共享库
o 共享库的初始化和~初始化函数分析
o C语言中const的用法
o 优质代码的十诫
o 如何加密/混乱C源代码
o 语言的歧义
o 谁说C语言很简单?
o Linux 内核中的 GCC 特性


   Search:

   

   Categories:

 Open All Close


Copyright techdoc.netsoftlab.ca powered by netsoft lab. 2007-2012  
Friend Websites:   netsoftlab.ca   cnstar.ca   CS lessions